Pv4 Data Access
Contents
Pv4 Data Access¶
This page provides information about how to access data from Plasmodium vivax version 4 (Pv4) project via Google Cloud. This includes sample metadata and single nucleotide polymorphism (SNP) calls for 1,895 samples from 27 countries. This release spans 11 partner studies and 3 external studies.
This notebook illustrates how to read data directly from the cloud, without having to first download any data locally. This notebook can be run from any computer, but will work best when run from a compute node within Google Cloud, because it will be physically closer to the data and so data transfer is faster. For example, this notebook can be run via MyBinder or Google Colab which are free interactive computing service running in the cloud.
To launch this notebook in the cloud and run it for yourself, click the launch icon () at the top of the page and select one of the cloud computing services available.
Setup¶
Running this notebook requires some Python packages to be installed. These packages can be installed via pip or conda. E.g.:
!pip install -q --no-warn-conflicts malariagen_data
To make accessing these data more convenient, we’ve created the malariagen_data Python package, which is available from PyPI. This is experimental so please let us know if you find any bugs or have any suggestions.
Now import the packages we’ll need to use here.
import numpy as np
import dask
import dask.array as da
from dask.diagnostics.progress import ProgressBar
import allel
# silence some warnings
dask.config.set(**{'array.slicing.split_large_chunks': False})
import malariagen_data
To access the Pv4 data stored on google cloud use the following code:
pv4 = malariagen_data.Pv4()
Metadata¶
Data on the samples that were sequenced as part of this resource are available. It includes the time and place of collection, quality metrics, and accesion numbers.
To see all the information available, load sample metadata into a pandas dataframe:
pv4_metadata = pv4.sample_metadata()
pv4_metadata.head()
Sample | Study | Site | First-level administrative division | Country | Lat | Long | Year | ENA | All samples same individual | Population | % callable | QC pass | Exclusion reason | Is returning traveller | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | BBH-1-125 | X0009-PV-ET-LO | Jimma | Ethiopia: Oromia | Ethiopia | 7.683331 | 36.851318 | 2016 | ERR2678989 | BBH-1-125 | AF | 88.52 | True | Analysis_set | False |
1 | BBH_1_132 | X0009-PV-ET-LO | Jimma | Ethiopia: Oromia | Ethiopia | 7.683331 | 36.851318 | 2016 | ERR2678991 | BBH_1_132 | AF | 90.20 | True | Analysis_set | False |
2 | BBH_1_137 | X0009-PV-ET-LO | Jimma | Ethiopia: Oromia | Ethiopia | 7.683331 | 36.851318 | 2016 | ERR2679003 | BBH_1_137 | AF | 87.09 | True | Analysis_set | False |
3 | BBH_1_153 | X0009-PV-ET-LO | Jimma | Ethiopia: Oromia | Ethiopia | 7.683331 | 36.851318 | 2016 | ERR2678992 | BBH_1_153 | AF | 90.60 | True | Analysis_set | False |
4 | BBH_1_162 | X0009-PV-ET-LO | Jimma | Ethiopia: Oromia | Ethiopia | 7.683331 | 36.851318 | 2016 | ERR2678993 | BBH_1_162 | AF | 91.67 | True | Analysis_set | False |
print("The dataset has {} samples and {} fields".format(pv4_metadata.shape[0],pv4_metadata.shape[1]))
The dataset has 1895 samples and 15 fields
We can explore each of the fields:
The Sample column gives the unique sample identifier used throughout all Pv4 analyses.
The Study refers to the partner study which collected the sample.
The Country, First-level administrative division and Site describe the location where the sample was collected from.
The Lat & Long contain the GADM coordinates for each country.
The Year column gives the time of sample collection.
The ENA column gives the run accession(s) for the sequencing read data for each sample.
The All samples same individual column identifies samples set collected from the same individual.
The Population column gives the population to which the sample has been assigned to, based on the degree of genetic similarity to other samples. The possible values are: Africa-Central (AF-C), Africa - East (AF-E), Africa - Northeast (AF-NE), Africa - West (AF-W), Asia - South Asia - East (AS-SA-E), Asia - South Asia - West (AS-SA-W), Asia - Southeast Asia - East (AS-SEA-E), Asia - Southeast Asia - West (AS-SEA-W), Oceania - New Guinea (OC-NG), South America (SA).
The % callable column refers to the % of the genome with coverage of at least 5 reads and less than 10% of reads with mapping quality 0.
The QC pass column defines whether the sample passed (True) or failed (False) QC.
The Exclusion reason describes the reason why the particular sample was excluded from the main analysis.
The Is returning traveller column states if the sample was collected from a person returning from travel. The region assigned in this case was based on the reported country of travel.
The python package Pandas can be used to explore and query the sample metadata in different ways. For example, here is a summary of the numbers of samples grouped by the country they were collected in:
pv4_metadata.groupby("Country").size()
Country
Afghanistan 250
Bangladesh 28
Bhutan 9
Brazil 71
Cambodia 236
China 5
Colombia 112
El Salvador 2
Ethiopia 203
India 14
Indonesia 282
Iran 15
Madagascar 4
Malaysia 109
Mauritania 1
Mexico 20
Myanmar 9
Nicaragua 1
North Korea 1
Panama 1
Papua New Guinea 47
Peru 123
Philippines 6
Sri Lanka 2
Sudan 13
Thailand 192
Vietnam 139
dtype: int64
Variant Calls¶
These files contain details of 4,571,056 discovered variant genome positions. These variants were discovered amongst all samples from the release.
945,649 of these variant positions are SNPs, with the remainder being either short insertion/deletions (indels), or a combination of SNPs and indels.
Data on variant calls, including the genomic positions, alleles, and genotypes, can be accessed as an xarray Dataset:
variant_dataset = pv4.variant_calls()
variant_dataset
<xarray.Dataset> Dimensions: (variants: 4571056, alleles: 7, samples: 1895, ploidy: 2) Coordinates: variant_position (variants) int32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_chrom (variants) object dask.array<chunksize=(65536,), meta=np.ndarray> sample_id (samples) object dask.array<chunksize=(1895,), meta=np.ndarray> Dimensions without coordinates: variants, alleles, samples, ploidy Data variables: variant_allele (variants, alleles) object dask.array<chunksize=(65536, 1), meta=np.ndarray> variant_filter_pass (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> variant_is_snp (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> variant_numalt (variants) int32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_CDS (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> call_genotype (variants, samples, ploidy) int8 dask.array<chunksize=(65536, 64, 2), meta=np.ndarray> call_AD (variants, samples, alleles) int16 dask.array<chunksize=(65536, 64, 7), meta=np.ndarray>
The default returns a basic set of data most commonly used for data analysis. However, for more complex analysis the full range of variables available in the zarr can be accessed by setting the extended flag to True
, as shown below:
extended_variant_dataset = pv4.variant_calls(extended=True)
extended_variant_dataset
<xarray.Dataset> Dimensions: (variants: 4571056, alleles: 7, samples: 1895, ploidy: 2, genotypes: 3, alt_alleles: 6) Coordinates: variant_position (variants) int32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_chrom (variants) object dask.array<chunksize=(65536,), meta=np.ndarray> sample_id (samples) object dask.array<chunksize=(1895,), meta=np.ndarray> Dimensions without coordinates: variants, alleles, samples, ploidy, genotypes, alt_alleles Data variables: (12/42) variant_allele (variants, alleles) object dask.array<chunksize=(65536, 1), meta=np.ndarray> variant_filter_pass (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> variant_is_snp (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> variant_numalt (variants) int32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_CDS (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> call_genotype (variants, samples, ploidy) int8 dask.array<chunksize=(65536, 64, 2), meta=np.ndarray> ... ... variant_SNPEFF_IMPACT (variants) object dask.array<chunksize=(65536,), meta=np.ndarray> variant_SNPEFF_TRANSCRIPT_ID (variants) object dask.array<chunksize=(65536,), meta=np.ndarray> variant_SOR (variants) float32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_VQSLOD (variants) float32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_VariantType (variants) object dask.array<chunksize=(65536,), meta=np.ndarray> variant_altlen (variants, alt_alleles) int32 dask.array<chunksize=(65536, 6), meta=np.ndarray>
Each of the elements in this xarray dataset is a dask array. The individual dask arrays can be accessed as follows, replacing the string with the variable you are looking for:
pos = variant_dataset["variant_position"].data
pos
|
Genotypes¶
Genotypes for individual samples are available.
Genotypes are stored as a three-dimensional array, where:
the first dimension corresponds to genomic positions,
the second dimension is samples,
the third dimension is ploidy (2).
Values coded as integers, where -1 represents a missing value, 0 represents the reference allele, and 1, 2, and 3 represent alternate alleles.
Variant genotypes can be accessed as dask arrays as shown below.
gt = variant_dataset["call_genotype"].data
gt
|
Note that the columns of this array (second dimension) match the rows in the sample metadata. You can use this correspondance to apply further subsetting operations to the genotypes by querying the sample metadata. E.g.:
loc_cambodia = pv4_metadata.eval("Country == 'Cambodia'").values
print(f"found {np.count_nonzero(loc_cambodia)} samples from Cambodia")
variant_dataset_cambodia = variant_dataset.isel(samples=loc_cambodia)
variant_dataset_cambodia
found 236 samples from Cambodia
<xarray.Dataset> Dimensions: (variants: 4571056, alleles: 7, samples: 236, ploidy: 2) Coordinates: variant_position (variants) int32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_chrom (variants) object dask.array<chunksize=(65536,), meta=np.ndarray> sample_id (samples) object dask.array<chunksize=(236,), meta=np.ndarray> Dimensions without coordinates: variants, alleles, samples, ploidy Data variables: variant_allele (variants, alleles) object dask.array<chunksize=(65536, 1), meta=np.ndarray> variant_filter_pass (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> variant_is_snp (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> variant_numalt (variants) int32 dask.array<chunksize=(65536,), meta=np.ndarray> variant_CDS (variants) bool dask.array<chunksize=(65536,), meta=np.ndarray> call_genotype (variants, samples, ploidy) int8 dask.array<chunksize=(65536, 2, 2), meta=np.ndarray> call_AD (variants, samples, alleles) int16 dask.array<chunksize=(65536, 2, 7), meta=np.ndarray>
The data on genomic variants can be loaded into memory as numpy arrays as shown in the following example, where we read genotypes for the first 5 SNPs and the first 3 samples:
g = gt[:5, :3, :].compute()
g
array([[[-1, -1],
[ 0, 0],
[-1, -1]],
[[-1, -1],
[ 0, 0],
[-1, -1]],
[[-1, -1],
[ 0, 0],
[-1, -1]],
[[-1, -1],
[ 0, 0],
[-1, -1]],
[[-1, -1],
[ 0, 0],
[-1, -1]]], dtype=int8)
If you want to work with the genotype calls, you may find it convenient to use scikit-allel. E.g., the code below sets up a genotype array using the Cambodian samples subset we created above.
# use the scikit-allel wrapper class for genotype calls
gt = allel.GenotypeDaskArray(variant_dataset_cambodia["call_genotype"].data)
gt
0 | 1 | 2 | 3 | 4 | ... | 231 | 232 | 233 | 234 | 235 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ./. | ./. | ./. | 0/0 | 0/0 | ... | ./. | 0/0 | ./. | 0/0 | ./. | |
1 | ./. | ./. | ./. | 0/0 | 0/0 | ... | ./. | 0/0 | ./. | 0/0 | ./. | |
2 | ./. | ./. | ./. | 0/0 | 0/0 | ... | ./. | 0/0 | ./. | ./. | ./. | |
... | ... | |||||||||||
4571053 | ./. | ./. | ./. | ./. | ./. | ... | ./. | ./. | ./. | ./. | ./. | |
4571054 | ./. | ./. | ./. | ./. | ./. | ... | ./. | ./. | ./. | ./. | ./. | |
4571055 | ./. | ./. | ./. | ./. | ./. | ... | ./. | ./. | ./. | ./. | ./. |
Genome Annotations¶
Gene annotations provide information on which regions of the genome contain DNA sequences that encode genes, which are transcribed and spliced into messenger RNA (mRNA) and then translated to make proteins.
For convenience, we’ve added some functionality to the malariagen_data package for loading these gene annotations into a pandas data frame as shown below:
genome_features = pv4.genome_features()
genome_features
contig | source | type | start | end | score | strand | phase | ID | Parent | Name | alias | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | PvP01_00_v1 | chado | contig | 1 | 402823 | NaN | + | NaN | Transfer.PvP01_00_1.final | NaN | NaN | NaN |
1 | PvP01_00_v1 | chado | gene | 53 | 669 | NaN | + | NaN | PVP01_0000010 | NaN | NaN | NaN |
2 | PvP01_00_v1 | chado | mRNA | 53 | 669 | NaN | + | NaN | PVP01_0000010.1 | PVP01_0000010 | NaN | NaN |
3 | PvP01_00_v1 | chado | CDS | 53 | 135 | NaN | + | 0.0 | PVP01_0000010.1:exon:1 | PVP01_0000010.1 | NaN | NaN |
4 | PvP01_00_v1 | chado | CDS | 199 | 415 | NaN | + | 1.0 | PVP01_0000010.1:exon:2 | PVP01_0000010.1 | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
38676 | PvP01_MIT_v1 | chado | CDS | 4782 | 5912 | NaN | + | 0.0 | PVP01_MIT03400.1:exon:1 | PVP01_MIT03400.1 | NaN | NaN |
38677 | PvP01_MIT_v1 | chado | polypeptide | 4782 | 5912 | NaN | + | NaN | PVP01_MIT03400.1:pep | NaN | NaN | NaN |
38678 | PvP01_MIT_v1 | chado | gene | 5914 | 5985 | NaN | + | NaN | PVP01_MIT03500 | NaN | NaN | NaN |
38679 | PvP01_MIT_v1 | chado | rRNA | 5914 | 5985 | NaN | + | NaN | PVP01_MIT03500.1 | PVP01_MIT03500 | NaN | NaN |
38680 | PvP01_MIT_v1 | chado | CDS | 5914 | 5985 | NaN | + | 0.0 | PVP01_MIT03500.1:exon:1 | PVP01_MIT03500.1 | NaN | NaN |
38681 rows × 12 columns
The above loads a default set of attributes "ID", "Parent", "Name", "alias"
. To access all features set attributes
to "*"
.
pv4.genome_features(attributes="*")
contig | source | type | start | end | score | strand | phase | Dbxref | Derives_from | ... | non_cytoplasmic_polypeptide_region | orthologous_to | polypeptide_domain | previous_systematic_id | product | signal_peptide | stop_codon_redefined_as_selenocysteine | synonym | translation | transmembrane_polypeptide_region | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | PvP01_00_v1 | chado | contig | 1 | 402823 | NaN | + | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | PvP01_00_v1 | chado | gene | 53 | 669 | NaN | + | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | PvP01_00_v1 | chado | mRNA | 53 | 669 | NaN | + | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
3 | PvP01_00_v1 | chado | CDS | 53 | 135 | NaN | + | 0.0 | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4 | PvP01_00_v1 | chado | CDS | 199 | 415 | NaN | + | 1.0 | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
38676 | PvP01_MIT_v1 | chado | CDS | 4782 | 5912 | NaN | + | 0.0 | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
38677 | PvP01_MIT_v1 | chado | polypeptide | 4782 | 5912 | NaN | + | NaN | NaN | PVP01_MIT03400.1 | ... | ;query 47-73;,;query 126-134;,;query 192-218;,... | Pknowlesi:PKNH_MIT01900 link=PKNH_MIT01900.1:p... | iprscan;InterPro:IPR036150 :\tCytochrome b/b6,... | NaN | term=cytochrome b; | NaN | NaN | NaN | mnyysinlakahllnypcplninflwnygfllgiiffiqiltgvfl... | ;query 24-46;,;query 74-96;,;query 103-125;,;q... |
38678 | PvP01_MIT_v1 | chado | gene | 5914 | 5985 | NaN | + | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
38679 | PvP01_MIT_v1 | chado | rRNA | 5914 | 5985 | NaN | + | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
38680 | PvP01_MIT_v1 | chado | CDS | 5914 | 5985 | NaN | + | 0.0 | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
38681 rows × 34 columns
Or to get a specific set of attributes specify them in a list
pv4.genome_features(attributes=['alias','comment','product'])
contig | source | type | start | end | score | strand | phase | alias | comment | product | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | PvP01_00_v1 | chado | contig | 1 | 402823 | NaN | + | NaN | NaN | Archived from fasta_record feature Transfer.Pv... | NaN |
1 | PvP01_00_v1 | chado | gene | 53 | 669 | NaN | + | NaN | NaN | NaN | NaN |
2 | PvP01_00_v1 | chado | mRNA | 53 | 669 | NaN | + | NaN | NaN | NaN | NaN |
3 | PvP01_00_v1 | chado | CDS | 53 | 135 | NaN | + | 0.0 | NaN | NaN | NaN |
4 | PvP01_00_v1 | chado | CDS | 199 | 415 | NaN | + | 1.0 | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
38676 | PvP01_MIT_v1 | chado | CDS | 4782 | 5912 | NaN | + | 0.0 | NaN | NaN | NaN |
38677 | PvP01_MIT_v1 | chado | polypeptide | 4782 | 5912 | NaN | + | NaN | NaN | NaN | term=cytochrome b; |
38678 | PvP01_MIT_v1 | chado | gene | 5914 | 5985 | NaN | + | NaN | NaN | NaN | NaN |
38679 | PvP01_MIT_v1 | chado | rRNA | 5914 | 5985 | NaN | + | NaN | NaN | NaN | NaN |
38680 | PvP01_MIT_v1 | chado | CDS | 5914 | 5985 | NaN | + | 0.0 | NaN | NaN | NaN |
38681 rows × 11 columns
Genome Reference¶
We mapped sequence reads for all samples against the PvP01 reference genome.
For convenience, the reference genome sequence can be loaded as a dask array, e.g.:
ref = pv4.genome_sequence()
ref
|
This can be loaded as a numpy array using the following
ref.compute()
array([b'a', b'a', b't', ..., b't', b'a', b'a'], dtype='|S1')
The reference can also be subset by contig.
The set of contigs used can be accessed as follows:
pv4.contigs
['PvP01_01_v1',
'PvP01_02_v1',
'PvP01_03_v1',
'PvP01_04_v1',
'PvP01_05_v1',
'PvP01_06_v1',
'PvP01_07_v1',
'PvP01_08_v1',
'PvP01_09_v1',
'PvP01_10_v1',
'PvP01_11_v1',
'PvP01_12_v1',
'PvP01_13_v1',
'PvP01_14_v1',
'PvP01_API_v1',
'PvP01_MIT_v1']
To load a single contig
pv4.genome_sequence(region='PvP01_01_v1')
|
To load multiple contigs specify them in a list. The data will be concatenated.
pv4.genome_sequence(region=['PvP01_01_v1','PvP01_06_v1','PvP01_10_v1'])
|
You can also specify a specific region of the contig.
pv4.genome_sequence(region=['PvP01_01_v1','PvP01_06_v1:15-20','PvP01_10_v1:40-50'])
|
If you know the gene name you would like to access, but aren’t sure what the ID would be you can access this through the annotations. Below is an example for ?
.
gene_name = str(genome_features.loc[genome_features.Name == 'ORC2'].ID.values)
print(gene_name)
['PVP01_0105500']
You can then enter this as the region
pv4.genome_sequence(region='PVP01_0105500')
|